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Motivated by an earlier observation by J. H. Fischer, around 1980 B. Conway
conjectured that the Coxeter diagram Ysss on Fig. 1 together with a single
additional (so-called “spider”) relation (ab,c,ab,c,absc3)*® = 1 form a presenta-
tion for the wreath product of the Monster group M and a group of order 2. This
conjecture was proved by S. P. Norton and the author in 1990. The original proof
was rather involved, relying on simple connectedness results for certain diagram
geometries, on numerous data obtained by coset enumeration on a computer, and
on some delicate calculations with subgroups coming from the 26-node theorem. In
the present work we follow an inductive approach to the identification of Y-groups
by considering larger Y-groups as transitive extensions of smaller ones. Along these
lines we obtain an alternative identification proof for the Y-groups which is almost
computer-free: we refer to only one result of (double) coset enumeration. Our
approach provides a uniform understanding of the Y-groups, particularly of fea-
tures such as centres and redundant generators.  © 1999 Academic Press

1. INTRODUCTION

We start with the Coxeter diagram given in Fig. 1 known as the
Y;s-diagram and the following relation known as the spider relation:

(ablclabzczab3c3)10 =1.

*This paper has been written while the author was visiting RIMS at University of Kyoto.
Warm hospitality of this institution is gladly acknowledged.

412

0021-8693 /99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.



Y-GROUPS VIA TRANSITIVE EXTENSION 413

f2

a

bs

C3
d3
€3
fa

FIGURE 1

For 2 < p,q,r <5 define Y, . to be the quotient over the spider relation
of the Coxeter group, whose generators are a and

first p terms from by, ¢;,d;, ey, fi;
first g terms from b,,c,,d,, e,, f5;
first  terms from bs, c5,ds, €5, f3;

and whose Coxeter relations correspond to the subdiagram of the Y .-di-
agram induced by the generators. A homomorphic image of the group Y, ,
is called a Y, ,-group and the Coxeter generators of Y, are usually
identified with their images in a Y, -group. If Z is a Y, -group and
X,y,...,z are some Coxeter generators of Z (or rather of Y, ) then
Z|x,y,...,z] denotes the subgroup in Z generated by all its Coxeter
generators except for x, y,..., z. In these terms if x is the terminal node
of the left arm of the Coxeter diagram of Y, and p > 3then Y, |x|isa
Y(pfl)q_r'g"OUp' .

If min{p, q,r} <2 then we define Y, as Y, . lx,...,z] where p, =
min{2, p}, ¢, = min{2, ¢}, r; = min{2, r}, and x, ..., z are the nodes in the
Coxeter diagram of Y, . . whose removal gives the Coxeter diagram of
Y, Suppose that p — 1,¢q,r > 2 and that x is the terminal node of the
left arm of the Coxeter diagram of Y, ,. Thena Y, -group Z is said to be
strong if Z|x] = Y- 1yar

If p,q,r > 2 then every defining relation of Yp
implies the following.

qr

4+ as even length which



414 A. A. IVANOV

LEMMA 1.1, Suppose that 2 < p,q,r <5, that Z is a Y, ,-group and that
O*(Z) = Z. Then the direct product of Z and a group of order 2 is also a
Y, ~group.

The structure of the groups Y, . is given in Table I. The groups above
Y.., have been identified by means of coset enumeration on a computer in
[CNS88], the group Y,,, has been identified by D. Z. Djokovit also by
coset enumeration on a computer and a computer-free identification can
be found in [CP92]. The group Y,,;, has been identified using double coset
enumeration performed by S. A. Linton (cf. [Lin89; Soi91]). The isomor-
phism type of Y,,, was proved by combining the results in [Nor90; Nor92;
Iv91; Iv92a] (see also [Con92]). The group Y,;; has been identified in
[Iv92b]. It has been proved in [Soi89] that the isomorphism Y,,, =2 X M
implies the isomorphism Y,, = M \ 2. An independent characterization of
Fischer groups as Y-groups can be found in [Vi97]. The groups Y. p=5
were identified in [Pr89] with certain orthogonal groups over GF(3) (we do
not present these results here). If ¢ > 3, r > 2 then Y;,, =Y, ,; Y3, and
higher Y-groups collapse to a group of order 2 (cf. Subsection 3.5 of the
present paper). It is worth mentioning that Y-groups map isomorphically
onto their natural images in Y,,, except for the groups Y,,, and Y,,, which
are losing their centres of order 2.

TABLE |
par qur [qur : Y(p*1>f1f]

321 2 % Spg(2) 56
421 2-052):2 240
331 27.(2 X Spg(2) 128
431 2 % Spg(2) 255
441 05(2):2 528
222 3%:0:03):2 243
322 2 x 0,03 728
422 2-04(3):2 2160
332 2 X 2-Fiy, 28,160
432 2 X Fiy 31,671
442 3 Fiy 920,808
333 2 x 22 2E¢(2) 2,370,830,336
433 2X2-BM 27,143,910,000
443 2XM 97,239,461,142,009,186,000

444 M2 M| ~ 10%
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2. FROM Y-GROUPS TO Y-GRAPHS

We start this section with a definition. Let A be a graph and G be a
vertex- and edge-transitive automorphism group of A. Let = be another
graph and H be an automorphism group of Z which is also assumed to be
vertex- and edge-transitive. For a vertex « € E let E,(«) denote the set of
vertices at distance i from « and let H(«) denote the stabilizer of « in
H. Then (Z, H) is said to be weakly locally (A, G) if for every o € E there
is an isomorphism

. (4,G) = (By(@), H()),

of permutation groups such that whenever {x,y} is an edge of A,
{g,(x), ¢, (y)} is an edge of E. Notice that if (E, H) is weakly locally
(A, G) then H is a transitive extension of G (cf. [Su86, p. 545]). Identifying
A and E,(a) via ¢, we can say that the subgraph in E induced by E,(a)
is a union of the orbitals of the action of G on A and this union contains
the orbital formed by the edges of A. When H and G are clear from the
context we simply say that E is weakly locally A.

Suppose that Z is a Y,,,-group, where p > 2, that x is the terminal
node of the left arm of the Coxeter diagram of Y, , and y is the node
adjacent to x. We have fixed the left arm to simplify the notation. Define a
Y-graph T = I'(Z, x) to be a graph on the set of right cosets in Z of the
subgroup Z| x| in which two cosets Z|x|g,, Z| x|g, are adjacent if there is
an element 4, in the former coset and an element 4, in the latter coset
such that /#, = xh,. In other terms the edges of I' are the images under
the natural action of Z of the pair e = {Z|x], Zl x|x}. If Z(e) is the
elementwise stabilizer of the edge e then

Z(e) =Z|x|nZ|x]".

It is obvious that the latter group contains Z|x, y| and the Y-graph T is
called correct if Z(e) = Z|x, yl.

Let a« = Zlx), B =Zlx]|x, y=Zlx]xy, H={x,y) = Sym, and sup-
pose that T is correct. Then Z| x| = Z(a) acts on T'(«) as it acts on the
cosets of Z|x, y]. Furthermore, since (xy)® = 1 and y € Z| x| we have

vyx=Z|x|xyx=Z|x|yxy=Z|x|xy =,

which shows that T := {«, 8, y} is a triangle in T" on which H induces the
natural action. The images of 7 under Z are called Y-triangles. Thus the
action of Z(a) on T'(«) is similar to its action on the vertex set of
A =T(Z|x],y) and two vertices in T'(«) are adjacent whenever the
corresponding vertices in A are adjacent. This shows that T'(Z, x) is weakly
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locally T'(Z|x], y) (notice that Z|x] is a Y, o Dar
the most important case of this observation in

-group). We summarize

LEMMA 2.1, Suppose that Z is a strong Y, ,-group where p — 1,q,r > 2
and that T'(Z, x) is correct. Then I'(Z, x) is weakly locally T'(Y,_),,, y).

Suppose that both I'(Z, x) and I'(Y,,,, x) are correct. This is the case,
for instance, when I'(Z, x) is correct and [y] is a maximal sub-
group in Y,

(p Dgr

»—1)g- Then the natural homomorphism

.Y —>Z

paqr

induces a covering
g T( pq,,x) - T1(Z,x),

of graphs such that the Y-triangles are contractible with respect to i,
which gives

LEMMA 2.2.  Suppose that Z is a strong Y, ~group and that both T(Z, x)
and T'(Y,,,, x) are correct. Suppose further that the Y-triangles in T'(Z, x)

generate the fundamental group of T(Z, x). Then Z = Y,

pqr:

In some cases examples of Y-groups can be constructed via their
Y-graphs.

LEMMA 2.3. Let y be the terminal node of the left arm of the Y, (p-Dar
diagram, where p — 1, q,r > 2, and z be the node adjacent to y. Let 5 be a
graph and Z be a vertex- and edge-transitive automorphism group of E and
suppose that the following conditions hold for a being a vertex of E:

() T(Y,_1),, y) is correct,

(i) (B, 2) is weakly locally (T'(Y,,_y),, )Y
corresponding 1som0)ph1sm

(i) if B = gL YD then the setwise stabilizer in Z of {a, B} is
the direct product of Z{ a) N Z(B) and a group of order 2 generated by x;

(iv) the setwise stabilizer in Y,_,),, of {Y, (- Dl VLY ng Ly Iy} s
the direct product {y) XY ,_1),,1y,z] and <y) is the centre of this stabi-
lizer.

(p-1gr) and ¢, is the

Then Z is a strong Y, ~group.

Proof. The Coxeter generators of Z are x and the set K of (the images
under ¢, of) the Coxeter generators of Y, ,_,) .. By (ii) the generators in K
satisfy the Coxeter relations and the spider relation. By (iii) x commutes
with all the generators in K except for y. The product xy induces an
action of order 3 on the triangle T = {«, B, v} where y = ¢ (Y ,_1 ), ly]y).
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Hence o := (xy)? is in the elementwise stabilizer L of this triangle. By (i)
L =Y, _y,ly zl by (i, (iv) we have o € Z(L) and Z(L) is trivial by
(iv). Hence (xy)® = 1 and the result follows. 1

3. AN INDUCTIVE APPROACH

Our general approach to Y, , is the following. We consider a group Z
acting vertex and edge transitively on a graph E and we show eventually
that = is I'(Y,,,, x) where x is the terminal node of the left arm of the
Y, ~diagram. First we show that = is weakly locally I'(Y;,_,,,,, y) where y
is the node adjacent to x. Then we check the conditions in Lemma 2.3 and
conclude that Z is a strong Y, ,-group. Finally we show that the Y-trian-
gles generate the fundamental group ofI' and conclude from Lemma 2.2
that Z =Y, _,. On the last step we use the following sufficient condition of
triangulability which is a straightforward generalization of Lemma 5 from

[Ron81].

LEMMA 3.1. Let E be a graph of diameter d and suppose that for every
2 < i < d the following two conditions hold:

() if B € E(@) then the subgraph in E induced by E,(a) N E,_,(B)
is connected;

(i) if B,ye Ea) and B € E\(y) then the distance in E between
Ea) N E,_(B)and E(a) N E,_(y) is at most 1.

Then E is triangulable which means that its fundamental group is generated by
the triangles.

In some cases we are able to show that the covering of E under
consideration induces another covering of graphs whose bijectivity is
known from the literature. For this we use the strategy introduced in
[1v94].

31 Yy, =3°:0,03):2

The Coxeter group C of the diagram Y,,, is affine of type E;, so that C
is the semidirect product of the Eg-lattice L and the spherical Coxeter
group of type E,, isomorphic to Q,(3):2. Let o be the expression in the
brackets of the spider relation. Then the image of o in C/L is of order 10
and hence o' € L. Direct calculations in the Eg-lattice show that the
normal closure of o generates 3L and the image in L /3L = 3° of this
closure is one dimensional, hence the result.

There is an orthogonal form on 0,(Y,,,) and Y,,,/0,(Y,,,) is the full
automorphism group of this form. Then T'(Y,,,, ¢,) is a graph on the set of
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all vectors in a five-dimensional GF(3)-space W with a non-singular
orthogonal form, such that v,w € W are adjacent if (v + w) is a plus
vector, which means that the orthogonal complement (v + w)* contains a
two-dimensional totally singular subspace. It is straightforward to calculate
that the suborbit diagram of I'(Y,,,, c¢,) is in Fig. 2.

32. Yy, =2 X Q,(3)

Let W be a seven-dimensional GF(3)-space with a non-singular quadratic
formand Z = 2 X Q,(3) be the full automorphism group of this form. Let
E be a graph on the set of non-zero isotropic vectors in W in which two
such vectors are adjacent if their inner product is plus 1. Direct calcula-
tions show that the suborbit diagram is in Fig. 3.

80
18 27
1420
72 1 20
30
24 2
90
24
FIGURE 2
72 72
243 1 90 90 1 243
(D) Oey
80 80
81 81

FIGURE 3
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If « € E then Z(a) = 3°: Q.(3):2 = Y,,, and O,(Z(«a)) acts regularly
on E,(a) which immediately shows that = is weakly locally T'(Y,,,, c,). It
is easy to check that the remaining conditions in Lemma 2.3 are also
satisfied and hence Z is a strong Ys,,-group. From Fig. 3 we see that all
triangles in E are Y-triangles. Direct calculations in the orthogonal mod-
ule W enable one to check the conditions in Lemma 3.1. Thus Z is
triangulable, hence Z = Y;,, and E = I'(Y;,,, d;) by Lemma 2.2.

For {i, j, k} = {1,2, 3} the nodes a, b;, ¢, d;, b;, c;, b, on the Yg.-diagram
induce a spherical E,-diagram, so that the corresponding Coxeter group is
isomorphic to Spg(2) X 2 and its centre is generated by the following

element (cf. [CNS88)):
9
fiji = (abic;d;bic;by) .

For i = 2and 3 put X; = Ya,,lc;] and let X, be the subgraph in T'(Ys,,, d;)
induced by the images of Y;,,|d;] under X,. The Coxeter diagram of X; is
spherical of type E, and since all the Coxeter generators in Y;,, are
pairwise different, either X, = Spg(2) X 2 or X; = Sps(2). In the latter

case |3,/ =28 and X, acts on X, doubly transitively. By observing that
I'(Ys,,, dy) does not contain cliques of size 28, or otherwise one concludes
that X; = Sp,(2) X 2 and the suborbit diagram of 3, with respect to the
action of X is in Fig. 4.

Comparing Fig. 4 with the diagram of T'(Y;,,,d,), we immediately
deduce that Z(X,) = Z(X,) = Z(Y,,,) and in terms of the above para-

graph that f,3 = fi3,-

LeEmMmA 3.2. If q,r = 2 then the element f,3 = fi3, is in the centre
of Yy,

Proof. A Coxeter generator of Y;,, commutes with f,;; since the latter
element generates the centre of Y,,,. On the other hand d, and higher
terms clearly commute with f,;, and the result follows. 1

Permuting the indices p, g, r we obtain obvious analogues of Lemma 3.2
(compare the centres of Y-groups in Table 1).

In Fig. 5 we present the suborbit diagram of T'(Ys,,, c,).

Notice that T'(Y,,,,c,) is the unique orbital graph of valency 288 of
Q,(3) acting on the cosets of Sps(2) and every subgroup in Q,(3) of index
3159 is isomorphic to Spg(2).

FIGURE 4
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33. Yy, = 2-Q5(3):2

Let W be an eight-dimensional GF(3)-space with a non-singular
guadratic form of plus type. The automorphism group of this form is
2-07(3):22 (cf. [ATLAS]. Let Z be a subgroup of index 2 in the
automorphism group which contains a subgroup H = 2 X Q,(3) trivially
intersecting the centre. Then Z ~ 2 - Q§(3).2, in the atlas notation. Let O
be the orbit of Z on the set of non-isotropic vectors in W such that H
stabilizes a vector from O and let E be a graph on O in which two vectors
are adjacent if their inner product is plus 1. Then the suborbit diagram of
E is in Fig. 6.

243 243

728 1 14240 14240 1 728
O @) 0

FIGURE 6
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Performing some easy calculations in the orthogonal module W, we
check that a triangle of E is contained in 72 complete subgraphs on four
vertices. In view of the suborbit diagram of T'(Y;,,, ¢,) this shows that E is
weakly locally T'(Ys,,, ¢;). It is straightforward to check the conditions in
Lemma 2.3 and to conclude that Z is a strong Y,,,-group. Finally the
conditions in Lemma 3.1 hold, which show the isomorphism between Z
and Y,,,.

34. Yy, = 2 X 2-Fiy,

In what follows we deal with two graphs, we denote by A(Fi,) and
A(3 - Fi,,). The former is the graph on the 3-transpositions in the Fischer
group Fi, in which two transpositions are adjacent if they commute; the
latter is triple antipodal covering of the graph on 3-transpositions of the
Fischer group Fi,, in which two transpositions are adjacent if they com-
mute. The suborbit diagram of A(Fi,;) with respect to the action of Fi is
in Fig. 7 while the suborbit diagram of A(3-Fi,,) with respect to the
action of 3 Fi,, is in Fig. 8. It was proved in [Ron81] that both A(Fi,;)
and A(3 - Fi,,) are triangulable (see also [Mei91] for a stronger characteri-
zation of these and related graphs).

Let us turn to Y,;,. By Lemma 3.2 {f,;3) is central in both Y,,, and
Ys3,1d; ] and hence it is in the kernel of the action of Y,,, on T'(Yy,,, d)).
Consider the action of Z := 2 - Fi,, (the non-split extension) on the cosets
of a subgroup isomorphic to Q,(3). One of the orbital graphs (we denote it
by E) with respect to this action has the suborbit diagram in Fig. 9.

In view of the diagram and the remark at the end of Subsection 3.2, we
conclude that E is weakly locally T'(Ys,,, c,). Now it is easy to check the
conditions in Lemma 2.3 and to conclude that Z is a strong Yj;,-group.

693 3159
3510 1 2816 351
28160
2. Fi 22.U(2) 2(3)
FIGURE 7
3510 28431 3510
31671 1 28160 1080 2160 28160 / \ 1 31671

G 31671 825792 63342 @
2% FZ‘23 22.Fi22 93(3)2 2.Fi22 F’Z’Qg

FIGURE 8
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288 288

759 1 630 630 1 3159
P —) =0

[2511]

FIGURE 9

One can see from the suborbit diagram of A(Fi,,) that the stabilizer in
Fi,; of a vertex a € A = A(Fi,;) is isomorphic to Z and its actions on the
vertex-set of = and on A,(«) are similar. Furthermore the subgraph in A
induced by A,(a) is also an orbital of valency 3159. Noticing that the
stabilizer in Z of a triangle in E is isomorphic to Sym. while the stabilizer
in Fi,, of a triangle in A(Fi,,) is of the form [2''].U,(2) (in particular it
does not involve Sym,), we have

LEMMA 3.3.  The subgraph in A induced by A,(a) and the graph E with
the suborbit diagram in Fig. 9 are two different orbitals of valency 3159 of the
action of 2 - Fi,, on the cosets of Q-(3).

Using Lemma 3.3 and calculating in the graph A(Fi,;) it is not difficult
to check that the conditions in Lemma 3.1 are satisfied for =, which gives
the isomorphism Yy,,/{ f,13) = 2 - Fi,,. Finally Lemma 1.1 completes the
identification.

Noticing that the Coxeter diagram of Y, is affine of type E,, it is not
difficult to identify Yg3,lc3l/< fiz3, f2132 With a maximal subgroup in Fi,,
of the form 2°:Sp,(2). The subdegrees of Fi,, acting on the cosets of
2°:Sp4(2), as calculated in [ILLSS], are

1, 135, 1260, 2304, 8640, 10,080, 45,360, 143,360, 241,920
Since Yy,,| by, 3] has index 2304 in 2°: Spg(2) the above subdegrees show

that T'(Ya,,, c3) is correct and that it is isomorphic to the unique orbital
graph of valency 2304 of the action of Fi,, on the cosets of 2°: Sp,(2).

35. Y3 = 2 X Fiy,

Let Z = Fi,; and E be the complement of A(Fi,;). Then the vertex
stabilizer Z(«) of the action of Z on E is isomorphic to 2 - Fi,, which is
the index 2 commutator subgroup of Y,;,. The suborbit diagram of E is in
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Fig. 10 and by Lemma 3.3 E is weakly locally T'(Ys,,, d,). Checking the
conditions in Lemma 2.3 we conclude that Z is a Y,;,-group.

The natural homomorphism ¢: Y, == Y,35,/{ 137 = Z induces a cov-
ering

P T(Yy,€1) = E,

of graphs with respect to which the Y-triangles are contractible. Our
nearest goal is to show that ¢ induces a covering of A = A(Fi,,).

Let P = (55,75, be a 2-path in I'(Y,,,, e,), P=(sy,s, 55 be its
image in = and suppose that s, and s, are adjacent in A. Since ¢ is a
covering of graphs the stabilizer of P in )_’432 maps isomorphically onto the
stabilizer H, of P in Z. On the other hand the suborbit diagram of E and
the remark at the end of Subsection 3.2 show that H, = Sp,(2). Without
loss of generality we assume that {5}, 5,} = {Yj3,le;], Yigyle;les}, so that
{s1,5,} ={Zle,l, Zle,le;}. Let X be the set of images of 5, under Y,;,ld, ]
and 3, be the set of images of s, under Z|d,|. Comparing the isomorphism
Y, = 2-Q4(3):2 and the list of maximal subgroups in Fi,; or otherwise
one concludes that Z|d,] = Qg(3):2 and hence |X| = 1080. Thus the
restriction of  to 2 is either a bijection or has fibers of size 2. In any case
without loss of generality we can assume that P € 3, P c 2 and by the
above sentence the stabilizer of {5;,5;} in Y,3,ld,| has index at most 2 in
the stabilizer H, of {s,,s;} in Z|d,]. From the suborbit diagram of
I'(Y,,,, e;) we see that H, = 2 X 2 - Uy(3): 2. Thus the stabilizers of {57, 53}
in Y,,, contains a subgroup isomorphic to Spy(2) and a subgroup isomor-
phic to 2 - U,(3). On the other hand the stabilizer in Fi,, of an edge in A,
isomorphic to 22 - Uy(2) (non-split extension) is generated by any two of its
subgroups isomorphic to Sps(2) and 2 - U,(3). Hence the stabilizer of
{5,,5,} in Y,;, maps isomorphically onto the stabilizer of {s,,s;} in Z
which shows that ¢ induces a covering

X:Z—>A,

of graphs. Here the vertex set of A is that of I'(Y,3,, ¢;) and the edges are
the images of {5,5,} under Y,;,. Since x is a covering of graphs, the

143159421840 2816
28160 1 3159 25344
’ 28160 3510
2.Fiy 2(3) 22 Ug(2)

FIGURE 10
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restriction of ¢ to S must be _a bijection and hence x induces an
isomorphism of the subgraph in A induced by S onto the subgraph in A
induced by 3. The latter graph is the antipodal folding of T'(Y,,,, ¢,) and it
is of rank 3. Since this subgraph obviously contains triangles and Fi,; acts
transitively on the set of triangles in A, we conclude that all the triangles
in A are contractible with respect to x. But then x (and hence ¢ as well)
must be an isomorphism since the triangles generate the fundamental
group of A [Ron81]. Application of Lemma 1.1 completes the identifica-
tion of Y,;,.

Analysing the list of maximal subgroups in Fi, it is not difficult to
identify Y,;,lc;] with 2 X Spg(2). Consider the action of Y,;, onI'(Y,,,, ¢3).
By Lemma 3.2 f,s, is in the kernel of the action. The stabilizer in Y,,, of
the edge e = {Y,3,lc;], Yys,lcslcs} obviously contains Y,,,| b, c5] = Sym,.
On the other hand the subdegrees of the action of Fi,; on the cosets of
Spg(2) were calculated in [ILLSS]. The only non-trivial subdegree which
divides the index 130,560 of Sym, in Spg(2) is 13,056 and the correspond-
ing 2-point stabilizer is isomorphic to Sym,,. Thus I'(Y,3,, ¢3) is not correct
but in fact there is a way to “correct” the situation by adjoining an
additional generator. Let H = Sym,, be the stabilizer in Y,,, of the edge
e. Then the subdiagram in Y,;, which is the Coxeter diagram of Y,,,| b5, c;]
can be extended to that of H by adjoining a node adjacent to e, or to d,.
Since f,,5 is in the centre of Y,;, the extra node (denote it by f;) must be
adjacent to e;. Since H has no outer automorphisms, f; commutes with
c;. We claim that f; also commutes with b,. This claim can be checked by
noticing that every edge of I'(Y,,, c5) is contained in 210 = [Sym,, : Sym,
x Sym,] triangles (cf. [ILLSS]) and that b, is involved in the expression
for the element f,,; and the latter commutes with f,. Thus Y,;, is a
Y.s,-group. Furthermore, f; commutes with Y,,,le;| =2 X 2-F,,, the
latter subgroup is self-centralized in Y,;, and by Lemma 3.2 its centre is
{fi23: fo137- Since e, has product of order 3 with both f; and f,, we
conclude that the latter two elements are equal.

LEMMA 3.4. Yy, = Y5,

Proof.  Suppose that Y, f;] is a proper subgroup in Y,;, and consider
the action of Yy, = Yi,/{fozy ON I'(Yss,, f,). Then the structure of
Y,s,. Yas,, and Y,s, show that the elementwise stabilizers of a vertex, an
edge, and a triangle in Y;,, are isomorphic to Fiy, 2 Fi,,, and Q,(3),
respectively. Hence T'(Yy,,, f;) is weakly locally the complement E of
A(Fi,,) with the suborbit diagram given in this subsection. If the diameter
of T'(Yy,,, f1) is 1 then the action of Y;,, on the vertex set of the graph is
doubly transitive and it is an easy exercise to show that this is not possible.

On the other hand from the suborbit diagram of Z we see that the
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number of vertices at distance 2 from a given vertex is at most
31671 - 3510,/25345 < 4500.

Comparing this estimate with the indices of maximal subgroups in Fi,; we
conclude that there is only one vertex at distance 2. Since the action of
Fi,; on E is primitive, this gives a contradiction.

By the above lemma and the paragraph before it, we obtain

COROLLARY 35. If g >3 and r > 2 then Y5, = Y,,, and f; = f153 =
fiz2-

Consider Y, with the obvious meaning. Then the generator corre-
sponding to the terminal node of the left arm of the Coxeter diagram
commutes with f,,; and has product of order divisible by 3 with f;. By
Corollary 3.5 this gives

COROLLARY 3.6. Yy, and higher Y-groups collapse to a group of
order 2.

36. Yy, = 3 Fiy,

Consider the action of Z = 3-Fi,, on A := A3 -Fi,,). If « € A then
Z(a) = 2 X Fiy = Y,,, and «a can be identified with the unique non-triv-
ial element in the centre of Z(«) (this element is an involution which
maps onto a 3-transposition in Fi,,). In these terms if B € A,(«) then the
product «g is of order 2, 3, 6 and 3 for i = 1, 2, 3, and 4, respectively.

Let B € A,(a). Then Z(a) N Z(B) = Q5(3):2 = Y,3,ld,]. Since the
commutator subgroup Z' still acts distance transitively on A, we conclude
that Z(a) N Z( B) is not contained in the direct factor Fi,, of Z(«). Since
all subgroups in Fi,; isomorphic to Q3 (3):2 are conjugate, this specifies
the action of Z(«) on A,(a) and in particular shows that this action is
similar to the action of Y,;, on the vertex set of T'(Y,,,,d,). Since
Yle,, dyl = Q§(2):2 is a maximal subgroup of index 28,431 in Y,,,ld, ]
= (;(3): 2, we conclude that T'(Y,,, d,) is correct of valency 28,431. The
suborbit diagram of A shows that the subgraph in A induced by A,(«) is
also an orbital of that valency. We claim that they are different orbitals.
Indeed, by Lemma 3.5 the stabilizer in Y,;, = Yg;, of a triangle in
I'(Y,3,, d,) contains Yg,,lb,, ¢,,d,] = Symy while the stabilizer in Z of a
triangle in A is of the form 23.U,(2) and does not involve Sym,. Hence the
claim follows.

Notice that the set

0(B) = {7a|3’e Ay(a) N AI(B)} = A (a) NA(B)
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is an orbit of length 28,431 of Z(a) N Z( B) on A,(«) containing vertices
which are at distance 2 from g in A. It follows from [PS97] that the action
of Fi,, on the cosets of Q3 (3):2 has subdegree 28,431 with multiplicity 1,
which means that if

¢ (F(Y432’d2)’Y432) - (Az(a)), Z(a))

is an isomorphism of permutation groups which sends Y,,,ld,| onto g,
then @( B) is the image under ¢ of the set of vertices adjacent to Y,;,1d, |
in T'(Y,3,, d,). Thus we have

LEMMA 3.7. Let E be a graph on the set of vertices of A = A(3 - F|24) in
which two vertices are adjacent if they are at distance 2 in A. Then E is
weakly locally T(Y,4,, d,).

Now it is easy to see that the conditions in Lemma 2.3 are satisfied and
hence Z = 3 - Fi,, is a Y,,,-group (by Lemma 3.5 it is also a Y;.,-group).
Our next goal is to show that the natural homomorphism

¢ Yy, > 2

induces a covering of A. Let 1'5 (51, 5,,53) be a 2-path in T'(Y,,,,le, D,
= (s, 55, 53) be its image in E and suppose that Sy and s; are adjacent
in A Since ¢ induces a covering of I'(Y,,,, e;) onto E, the stabilizer of P
in Y,,, is isomorphic to Q; (2): 2 which is the stabilizer of P in Z. Let 3
be the set of images of Y,,,le,] (considered as a vertex of T'(Y,,,,e;))
under Y,,,le,] and let X be the set of images of Z|e,] under Zle,]. Since
Yiole,l = Zle,| = Y,3, =2 X Fi,;, 2 maps bijectively onto X. Further-
more Y,,,le,] acts on 3 with kernel of order 2 and the induced action is
isomorphic to that of Fi,; on the vertex set of A(Fi,;). Without loss of
generality we assume that P C 3, in which case it follows from the suborbit
diagram of A(Fi,,) that the stabilizer of {5, 53} in Y,,,le, | is of the form
23.U,(2). Since the stabilizer of {s,, s;} in Z, isomorphic to 2 X 2 - Fi,, is
generated by its subgroups isomorphic to QF(2):2 and 23.U,(2), we
conclude that the stabilizer of {5}, 5;} in Y,,, maps isomorphically onto the
stabilizer of {s;, s3} in Z which implies that ¢ induces a covering

X:Z—)A,

of graphs. The subgraph in A induced by s maps isomorphically onto the
subgraph in A induces by 3, and both these subgraphs are isomorphic to
A(Fi,,). Since the latter graph contains triangles and Z acts transitively on
the set of triangles in A, we conclude that the triangles are contractible
with respect to y. Since A is triangulable by [Ron81] both y and ¢ are
isomorphisms and hence Y,,, = 3 - Fi,,. Now analysing the maximal sub-
groups in Fi,, or otherwise one can check that Y,,,lc;] = Q7,(2): 2.
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3.7. Y53 = 2 X 2% PE,(2)

By Lemma 3.2 {fiy3, fo13: farp? 1S central in Yy, and {f,3, fa1,) 1S
contained in Yyl d, |. Consider the action of Z =°E,(2) on the cosets of
Fiy, = Y33/ 213, f3127- The intersection numbers of the centralizer alge-
bra of this action have been calculated in [1Sa96]. These calculations show
particularly that there is an orbital graph E of valency 694,980 with edge
stabilizer isomorphic to a maximal subgroup of Fi,, isomorphic to
2°:Sp,(2). Furthermore, every edge of = is in exactly 13,644 triangles.
Since

13644 = 1260 + 2304 + 10080

is the only decomposition of the number of triangles on an edge into
the lengths of suborbits of Fi,, on the cosets of 2°: Sps(2) (compare Sub-
section 3.4), we conclude that = is weakly locally T'(Yj;,,cjy). It is
easy to check the conditions in Lemma 2.3, using the information in
[1Sa%6]. Hence Z is a Yg;;-group. A possible way to identify Z with
Ysa3/{ f123: f213» fa12> Would be to show that the fundamental group of Z
is generated by the Y-triangles. But this seems to be far too difficult, since
the structure of E is rather complicated and there are many classes of
cycles in this graph. By this reason we refer to the original identification of
Y545 Which follows from the double coset enumeration performed by S. A.
Linton (cf. [Lin89; S0i91)).

38. Y, =2x2-B

Let Z =2-B be the extension of the Baby Monster by its Schur
multiplier of order 2. Let () be the conjugacy class of involutions in Z with
centralizers of the form 22 -°E,(2) (cf. [ATLAS]). Then Z acts on Q by
conjugation, the centre of Z is the kernel and the induced action is similar
to that of B on the cosets of 2 -°E4(2). One of the orbitals of this action
has the suborbit diagram as given in Fig. 11 (compare [Iv94]) and we
denote this orbital also by . The vertices of () can be identified with the
involutions in the corresponding conjugacy class of 2 - B. Then the vertex
a' antipodal to « is the product of « and the involution in the centre of
Z. Furthermore the product aB has order 2, 2, 3, 4, 6 and 4 if B is
contained in Q,(a), Q(a), Q(a), Q(a), Q3(a’), and Qi(a), respec-
tively. Notice that by joining in () the antipodal vertices we obtain the
graph isomorphic to the subgraph in Monster graph from the next subsec-
tion induced by the vertices adjacent to a given vertex.

The group Z(a) = 22 -°E4(2) (the commutator subgroup of Yi,,) acts on
Q3(a@) as it acts on the cosets of its subgroup 2 - Fi,, (the commutator



428 A. A. IVANOV

69615

{ Qe )

3898440

142155 142155

8064

3127410 331776 N\ 331776 3127410
05(e)

694980

694980

3510 3510

[3295791)

1824768 1824768

2097152 2097152

3968055 3968055

FIGURE 11

subgroup of Ya;,). Hence this action is similar to the action induced by
Ys35 0n T'(Y3a,, d;). The graph T'(Yy,,, d;) has valency 694,980 and one can
see from the diagram of () that this is also the valency of the subgraph in
Q induced by Q3(«). By [1Sa96] the subdegree 694,980 appears with
multiplicity 1 in the action of *E,(2) on the cosets of Fi,,. This means that
for B € Q3(a) the subgroup Z(a) N Z( B) has exactly two orbits of length
694,980 on Q3(a), namely, Q3(a) N Q,(B) and O(B) = Q3(a) N
Q,(B%). Notice that if ye ©(B) then By is of order 3 and hence
y € Q3(B). We claim that I'(Yy,,d;) is isomorphic to the graph on
Q3(a) in which B is adjacent to O(B). In fact, the stabilizer in
Y333/ fo13: fa1,7 OF @ triangle in T'(Y,,,, d;) contains Symg while if H is
the stabilizer in B of a triangle in Q then H/O,(H) = U,(2) which does
not involve Symg and the claim follows.

Let E be a graph on the set of vertices of Q) in which « and 8 are
adjacent if B € Q3(a). By the above paragraph = is weakly locally
I'(Yq33, d;) and checking the remaining conditions in Lemma 2.3 we
conclude that Z = 2 - B is a Y,3;-group. Notice that we realize the Coxeter
generators of Y,;; by involutions inside 2-B. By Lemma 1.1 the direct
product 2 X 2 - B is also a Y,55-group.
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We claim that the homomorphism

@ )_/433 = Yy33/{fo13: fa12) > B

induces a covering y of Q. Let P = (5,,5,,5;) be a 2-path in I'(Y4,, e,)
which maps onto a 2-path P = (s, s,,s3) in E such that s; and s, are
adjacent in ). Since ¢ induces a covering of I'(Y,;;,e;) onto E, the
stabilizer of P in 17433 maps isomorphically onto the stabilizer of P in B
and the latter is the edge stabilizer of the subgraph in Q induced by
Q3(a), isomorphic to 2°:Sp,(2). We assume that 5; = Y,,;le,], so that
s, = Ble,]. Let S be the set of images of 5, under Y,,ld,] and let S be
the set of images of s, under B|d,]. Since

Yi3ld,| = Bld,| = Yi3,/{fr13) = Fiys,

S maps bijectively onto 3. Furthermore the action of Y,ld,| on I is
similar to that of Fi,; on A(Fi,,;). Assuming without loss of generality that
P c 3, we conclude from the suborbit diagram of A(Fi,,) that the stabilizer
of {5,753} in Y,ld,] is of the form 22 U,(2). Finally the stabilizer of
{s;, 55} in B, isomorphic to 22*% [(2) is generated by its subgroups
2°:9pg(2) and 22- U,(2) which implies that ¢ induces a covering y:
Q — Q of graphs. Here the vertices of () are the vertices of I'(Y,33, €,)
and the edges are the images of {5}, 5;} under Y,,;. The subgraph in Q
induced by X maps isomorphically onto the subgraph in Q induced by X
(both these subgraphs are isomorphic to A(Fi,)). Thus the triangles in
are contractible with respect to y. It has been proved in [Iv92b] and [Iv94]
(using the information on the antipodal folding of Q deduced in [Seg91])
that () is triangulable. Hence both x and ¢ are isomorphisms and
Y3 = B.

39. Yy =2 XM

Let Z be the Monster group M and A be the Monster graph which is a
graph on the conjugacy class of 2.4 (Baby Monster) involutions in the
Monster with two involutions being adjacent if their product is again a 2.4
involution. If « € A then Z(«) = 2 - B (the commutator subgroup of Y,;,)
and the subgraph in A induced by A,(«) is the graph Q from the previous
subsection together with a matching which joins pairs of antipodal vertices.
This shows that Z has two orbits on the triangles in A. Every edge is
contained in a unique triangle from one of the orbits (we call them short
triangles) and in 3,968,055 triangles from another orbit (we call them long
triangles). The suborbit diagram of A has been calculated in [Nor85] (see
also [GMS89]) and we summarize the information on this subdiagram
which we use in the following lemma (cf. [GMS89] for proofs).
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LEmMmA 3.8. Let o, B € A. Then

(i) the orbit A°(a) of Z(«a) containing B is uniquely determined by
the conjugacy class C which contains the product apf;

(ii) the class C is one of the following: 14,2 A, 2B, 3A4, 3C, 44, 4B,
5A, 6 A and the corresponding 2-element stabilizers Z(a) N Z(B) are iso-
morphic to 2 - B, 22 2E,(2), 22*?2.Co,, Fi,,, Th, 21*22.McL, 2.F,(2), HN,
2 - Fi,,, respectively;

(i) if B € A (a) then Z(a) N Z(B) acts transitively on the set of
vertices y € N*4(a) N A*A( B) with stabilizer isomorphic to Spg(2);

(iv) if B € A*®(a) then B is at distance 2 from o in A and there is a
unique 2-path joining these two vertices;

) if B € AN a) then the set A(a) N A(B) is of size 31,671 and
it consists of the 2 A involutions contained in Z(a) N Z( B) = Fi,y,.

Let E be a graph on the vertex set of A in which « and B are adjacent
if B € A*(a). By Lemma 3.8(ii) the isomorphism

(on :?433 = 433/<f213> - Z(a)

induces an isomorphism of the permutation group (I'(Y,,s, d3), Y,33) onto
the permutation group (E,(a), Z(a)). We denote the latter isomorphism
by the same letter . We claim that whenever u and v are adjacent
vertices in T'(Y,z,, d3), o(u) and o (v) are adjacent vertices in E. First the
stabilizer of {u, v} in Y,,; is isomorphic to Spg(2) and by Lemma 3.8(ii) we
have o(u) € A°(o(v)) where C is 2A4, 34, or 4B. Without loss of
generality we assume that u = Y,5,ld;] and v = Y,55ld;ld,. Then the
isomorphism o sends the Coxeter generators of Y,;,ld,] into Z(o(u)) and
by Lemma 3.8(v) the images of the generators are contained in A,(a) N
A (o (w)). The image under o of d, maps o (u) onto o(v) and commutes
with the images of the Coxeter generators of Y,5lc5, ds] which shows that
o(u) and o (v) have at least nine common neighbours in A and by Lemma
3.8(v) o(v) & A*®(o(u)). Suppose that o(v) € A°4(o(u)). Then by
Lemma 3.8(iii) T'(Y,3,, d;) maps isomorphically onto the subgraph in A
induced by =,(a). We know from Subsection 3.5 that the stabilizer in Y,
of a triangle in T'(Y,,, d3) is isomorphic to Sym,,. Clearly this must
correspond to long triangles, but if H is the stabilizer in Z of a long
triangle then H/O,(H) = U,(2) and the latter group does not involve
Sym,,. This contradiction shows that o (u) and o(v) are adjacent in E.
Hence E is weakly locally I'(Y,,,, d5). It is easy to check the conditions in
Lemma 2.3 and to conclude that Z = M is a Y,,;-group.
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Next we claim that the homomorphism

@ )7443 = Y3/ fa12) > M

induces a covering y: A - A of graphs with respect to which all long
triangles are contractible. Consider a 2-path P = (5,5,,53) in T'(Y,,3, ;)
which maps onto a 2-path P = (s, s,,s3) in E such that s; and s, are
adjacent in A. Then by Lemma 3.8(iii) and since ¢ induces a covering of
I'(Y,,, e;) onto E, the stabilizer of P in Y,,, is isomorphic to Spg(2).
Assume without loss of generality that 5, = Y, ;le,] and that 5, is con-
tained in the orbit of 5, under Y,;le,| = 2 - B. Then the suborbit diagram
of Q from the previous subsection shows that the stabilizer of {57, 53} in
Yusle, ] is isomorphic to 23+2°.(,(2). Finally since the stabilizer of {s,, s;}
in Z, isomorphic to 22 ~2E6(2), is generated by its subgroups isomorphic to
237 20.U(2) and Spg(2) we conclude that ¢ indeed induces a covering y:
A — A of graphs. The subgraph in A induced by the images of 5; under
17443[e2J is isomorphic either to the graph ) from the previous subsection
or to the subgraph in A induced by A,(a) and in any case the long
triangles are contractible with respect to y. It was proved in [ASeg92]
(using the information on the Monster graph deduced in [GMS89]) that A
is triangulable. In [1v94] using this result it was shown that the long
triangle already generates the whole fundamental group of =. Hence
Y,.3 = M and in view of Lemma 1.1 we have Y,,; = 2 X M.

3.10. Yy, = M 2

As above let M be the Monster group, let D be the direct product of
two copies of M,

D ={(g.h)g heM; (81, h1) - (82, h2) = (8182, hohy),

and define an action of D on M by (g, h): m — gmh for every m € M
and (g, h) € D. In this way we realize D as the group generated by the left
and right regular representations of M. Let 7 be the permutation on M
acting by 7: m — m~1. Then 7 can be considered as a permutation of D
via (g, h)" = (h~*, g~ 1), in particular = normalizes D and permutes its
direct factors. Define Z as the semidirect product of D and {7). Then it is
easy to see that Z is the Bimonster. If Z(1) is the stabilizer in Z of the
identity element of M then Z(1) = (t) X M’ where M’ ={(g,h) €D |g
= h~1} and hence every orbit of Z(1) on M is of the form C U C’ where
C is a conjugacy class of M and C' ={g™ ' | g € C}.

Let ¢ be a graph on M in which m, and m, are adjacent if and only if
m,;m;" is an element of type 34 in M. Since the class of 34 elements is
closed under taking inverses, Z acts on E vertex and edge transitively. If ¢
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is of type 34 then the stabilizer in Z of the triple T = {1,¢,t '} is
(1) X Ny ({t)) = 2 X 3-Fiyy,

which shows that the elementwise stabilizer in Z of the edge {1,¢} is
isomorphic to 3 - Fi,, while the setwise stabilizer is of the form 3 - Fi,, X 2.

Let 4 = Alt, be a subgroup in M with the monstralizer of the form
(Alt, x Q3,(2)):2 (cf. [Nor98)]). By the order reason all elements of order
3in A are of type 34 and hence by choosing ¢, and ¢, to be suitable such
elements, we obtain a triangle T, = {1,¢,,¢,} in E whose elementwise
stabilizer is isomorphic to Q7,(2): 2 (notice that T is fixed by the product
of an element in the monstralizer of 4 which inverts both ¢, and ¢, and
the element 7). Hence E is weakly locally I'(Y,,5, d5) and by checking the
conditions in Lemma 2.3, we conclude that Z is a Y,,,-group.

Let ¢: T'(Y,,,e;) > E be the covering of graphs induced by the
homomorphism of Y,,, — Z and let ® be a graph on M in which m, and
m, are adjacent if m,;m,* is an element of type 2B in M. We are going to
show that ¢ induces a covering x of ® and that certain triangles in ® are
contractible with respect to y. Notice that the elementwise stabilizer in Z
of an edge of @ is isomorphic to 2 X 21*?4.Co,. Consider in M a maximal
2-local subgroup

P = 27711722 (Sym, X Mat,,),

and let s be an element of order 3 in O, ;(P). Then Cp(s) = 2'.(3 X
Mat,,), s is of type 34 by the order reason and Z(O, (P)) is 2B pure of
order 4. Hence for s; € sZ(O,(P)) \ {s} we obtain a triple 7, = {1, s, 5,}
such that {s,1,s,} is a 2-arc in E and {s,s,} is an edge in ©. The
elementwise stabilizer of 7, in Z contains Mat,,. Since ¢ is a covering,
there is a pair of vertices {5, 5;} in T'(Y,,,, ;) which maps onto an edge of
©® and whose stabilizer in Y,,, contains Mat,,.

Put H = Z|e;] and let 3 be the set of images under H of the identity
element of M. Then by the previous subsection H = Yle;l =2 X M.
Furthermore if % is the vertex-set of a connected component of the
subgraph in I'(Y,,,, e,) induced by ¢~*(3) then the subgraph in T'(Y,,,, e;)
induced by 3 and the subgraph in = induced by 3 are isomorphic to
I'(Y,45, €;) and H acts on X with kernel of order 2. Now without loss of
generality in terms of the previous paragraph we can assume that s, s; € 3,
5,5, € 2. Then the setwise stabilizer of {s,s,} in H (isomorphic to the
stabilizer of {5,5,} in Y,,,) is of the form 2 x 22*22.Co,. Since the
stabilizer in Z of an edge in O is generated by any two of its subgroups
isomorphic to Mat,, and to 2 X 2%*22.Co,, we conclude that the stabilizer
in Yy, of {5;5;} maps bijectively onto the stabilizer in Z of {s,s,} and
hence ¢ induced a covering x: ® — ©® of graphs. Notice that the
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vertex-set of © is that of I'(Y,,,, e3) and the edges are the images under
Y,,4 Of the pair {5, 5;}.

It is clear that the covering y induces an isomorphism of the subgraph
in ® induced by X onto the subgraph in ® induced by 3. This means that
every triangle in X is contractible with respect to y. Such a triangle is
formed for instance by the non-identity elements in Z(O,(P)). Thus we
conclude that whenever z,, z,, z, are elements of type 2B in M such that
z;z;zz =1 and z; € 0,(Cy(z) for 1 <i, j < 3, then the triangle in ©
induced by {1, z,, z,} is contractible with respect to .

Now we are going to apply a result from [IPS96] to show that y is an
isomorphism. A direct factor M of D acts regularly on ® and hence ® can
be considered as a Cayley graph of M so that the corresponding genera-
tors are the 2B involutions. Let

5:0 - 0,

the covering of ® with respect to the subgroup in its fundamental group
generated by the images under M of the triangles {1, z;, z,} such that
24,2y, 23 = 2,2, are 2B involutions and z; € O,(Cy,(z)) for 1 <, j < 3.
Let M be the group of all liftings of elements of M to autmorphisms of ©.
It is clear that the subgroup of deck transformations acts regularly on each
fiber and hence M acts regularly on ©. This means that © is a Cayley
graph of M with respect to generators ¢(z), one for every 2B involution z
in M. Since © is undirected the generators are involutions and since the
triangle {1, z,, z,} as above is contractible with respect to &, the corre-
sponding generators satisfy the equality #(z;)¢(z,)t(z;) = 1. The following
result has been proved in [IPS96].

LEMMA 3.9. Let M be a group generated by involutions t(z), one for every
2 B-involution z in the Monster M such that t(z)t(z,)t(z3) = 1 whenever
24, 2y, z3 are 2 B involutions in M such that z; € O,(C(z)) for 1 <i,j <3
and z,z,z, = 1. Then M= M.

By Lemma 3.9 and the paragraph before it & is an isomorphism. Hence
X is an isomorphism as well and Y,,, = M \ 2.
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