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Motivated by an earlier observation by J. H. Fischer, around 1980 B. Conway
conjectured that the Coxeter diagram Y on Fig. 1 together with a single555

Ž . Ž .10additional so-called ‘‘spider’’ relation ab c ab c ab c s 1 form a presenta-1 1 2 2 3 3
tion for the wreath product of the Monster group M and a group of order 2. This
conjecture was proved by S. P. Norton and the author in 1990. The original proof
was rather involved, relying on simple connectedness results for certain diagram
geometries, on numerous data obtained by coset enumeration on a computer, and
on some delicate calculations with subgroups coming from the 26-node theorem. In
the present work we follow an inductive approach to the identification of Y-groups
by considering larger Y-groups as transitive extensions of smaller ones. Along these
lines we obtain an alternative identification proof for the Y-groups which is almost

Ž .computer-free: we refer to only one result of double coset enumeration. Our
approach provides a uniform understanding of the Y-groups, particularly of fea-
tures such as centres and redundant generators. Q 1999 Academic Press

1. INTRODUCTION

We start with the Coxeter diagram given in Fig. 1 known as the
Y -diagram and the following relation known as the spider relation:555

10ab c ab c ab c s 1.Ž .1 1 2 2 3 3
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Y-GROUPS VIA TRANSITIVE EXTENSION 413

FIGURE 1

For 2 F p, q, r F 5 define Y to be the quotient over the spider relationp qr
of the Coxeter group, whose generators are a and

first p terms from b , c , d , e , f ;1 1 1 1 1

first q terms from b , c , d , e , f ;2 2 2 2 2

first r terms from b , c , d , e , f ;3 3 3 3 3

and whose Coxeter relations correspond to the subdiagram of the Y -di-555
agram induced by the generators. A homomorphic image of the group Yp qr
is called a Y -group and the Coxeter generators of Y are usuallyp qr p qr
identified with their images in a Y -group. If Z is a Y -group andp qr p qr

Ž .x, y, . . . , z are some Coxeter generators of Z or rather of Y thenp qr
? @Z x, y, . . . , z denotes the subgroup in Z generated by all its Coxeter

generators except for x, y, . . . , z. In these terms if x is the terminal node
? @of the left arm of the Coxeter diagram of Y and p G 3 then Y x is ap qr p qr

Y -group.Ž py1.qr
� 4 ? @If min p, q, r - 2 then we define Y as Y x, . . . , z where p sp qr p q r 11 1 1

� 4 � 4 � 4min 2, p , q s min 2, q , r s min 2, r , and x, . . . , z are the nodes in the1 1
Coxeter diagram of Y whose removal gives the Coxeter diagram ofp q r1 1 1

Y . Suppose that p y 1, q, r G 2 and that x is the terminal node of thep qr
left arm of the Coxeter diagram of Y . Then a Y -group Z is said to bep qr p qr

? @strong if Z x ( Y .Ž py1.qr
If p, q, r G 2 then every defining relation of Y has even length whichp qr

implies the following.
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LEMMA 1.1. Suppose that 2 F p, q, r F 5, that Z is a Y -group and thatp qr
2Ž .O Z s Z. Then the direct product of Z and a group of order 2 is also a

Y -group.p qr

The structure of the groups Y is given in Table I. The groups abovep qr

Y have been identified by means of coset enumeration on a computer in442
w xCNS88 , the group Y has been identified by D. Z. Djokovic also by`442

coset enumeration on a computer and a computer-free identification can
w xbe found in CP92 . The group Y has been identified using double coset333

Ž w x.enumeration performed by S. A. Linton cf. Lin89; Soi91 . The isomor-
wphism type of Y was proved by combining the results in Nor90; Nor92;443

x Ž w x.Iv91; Iv92a see also Con92 . The group Y has been identified in433
w x w xIv92b . It has been proved in Soi89 that the isomorphism Y ( 2 = M443

implies the isomorphism Y ( M X 2. An independent characterization of44
w xFischer groups as Y-groups can be found in Vi97 . The groups Y , p G 5,p22

w x Ž . Žwere identified in Pr89 with certain orthogonal groups over GF 3 we do
.not present these results here . If q G 3, r G 2 then Y s Y ; Y and5qr 4 qr 632

Žhigher Y-groups collapse to a group of order 2 cf. Subsection 3.5 of the
.present paper . It is worth mentioning that Y-groups map isomorphically

onto their natural images in Y except for the groups Y and Y which444 421 422

are losing their centres of order 2.

TABLE I

w xpqr Y Y : Yp qr p qr Ž py1.qr

Ž .321 2 = Sp 2 566
qŽ .421 2 ? V 2 : 2 2408

7 Ž Ž ..331 2 . 2 = Sp 2 1286
Ž .431 2 = Sp 2 2558

y Ž .441 V 2 : 2 52810
5 Ž .222 3 : V 3 : 2 2435

Ž .322 2 = V 3 7287
qŽ .422 2 ? V 3 : 2 21608

332 2 = 2 ? Fi 28,16022
432 2 = Fi 31,67123
442 3 ? Fi 920,80824

22 Ž .333 2 = 2 ? E 2 2,370,830,3366
433 2 = 2 ? BM 27,143,910,000
443 2 = M 97,239,461,142,009,186,000

54< <444 M X 2 M ; 10
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2. FROM Y-GROUPS TO Y-GRAPHS

We start this section with a definition. Let D be a graph and G be a
vertex- and edge-transitive automorphism group of D. Let J be another
graph and H be an automorphism group of J which is also assumed to be

Ž .vertex- and edge-transitive. For a vertex a g J let J a denote the set ofi
Ž .vertices at distance i from a and let H a denote the stabilizer of a in

Ž . Ž .H. Then J, H is said to be weakly locally D, G if for every a g J there
is an isomorphism

w : D , G ª J a , H a ,Ž . Ž . Ž .Ž .a 1

� 4of permutation groups such that whenever x, y is an edge of D,
� Ž . Ž .4 Ž .w x , w y is an edge of J. Notice that if J, H is weakly locallya a

Ž . Ž w x.D, G then H is a transitive extension of G cf. Su86, p. 545 . Identifying
Ž . Ž .D and J a via w we can say that the subgraph in J induced by J a1 a 1

is a union of the orbitals of the action of G on D and this union contains
the orbital formed by the edges of D. When H and G are clear from the
context we simply say that J is weakly locally D.

Suppose that Z is a Y -group, where p G 2, that x is the terminalp qr
node of the left arm of the Coxeter diagram of Y and y is the nodep qr
adjacent to x. We have fixed the left arm to simplify the notation. Define a

Ž .Y-graph G s G Z, x to be a graph on the set of right cosets in Z of the
? @ ? @ ? @subgroup Z x in which two cosets Z x g , Z x g are adjacent if there is1 2

an element h in the former coset and an element h in the latter coset1 2
such that h s xh . In other terms the edges of G are the images under2 1

� ? @ ? @ 4 Ž .the natural action of Z of the pair e [ Z x , Z x x . If Z e is the
elementwise stabilizer of the edge e then

x
Z e s Z x l Z x .Ž . ? @ ? @

? @It is obvious that the latter group contains Z x, y and the Y-graph G is
Ž . ? @called correct if Z e s Z x, y .

? @ ? @ ? @ ² :Let a s Z x , b s Z x x, g s Z x xy, H s x, y ( Sym and sup-3
? @ Ž . Ž .pose that G is correct. Then Z x s Z a acts on G a as it acts on the1

? @ Ž .3 ? @cosets of Z x, y . Furthermore, since xy s 1 and y g Z x we have

g ? x s Z x xyx s Z x yxy s Z x xy s g ,? @ ? @ ? @

� 4which shows that T [ a , b , g is a triangle in G on which H induces the
natural action. The images of T under Z are called Y-triangles. Thus the

Ž . Ž .action of Z a on G a is similar to its action on the vertex set of1
Ž ? @ . Ž .D [ G Z x , y and two vertices in G a are adjacent whenever the1

Ž .corresponding vertices in D are adjacent. This shows that G Z, x is weakly
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Ž ? @ . Ž ? @ .locally G Z x , y notice that Z x is a Y -group . We summarizeŽ py1.qr
the most important case of this observation in

LEMMA 2.1. Suppose that Z is a strong Y -group where p y 1, q, r G 2p qr
Ž . Ž . Ž .and that G Z, x is correct. Then G Z, x is weakly locally G Y , y .Ž py1.qr

Ž . Ž .Suppose that both G Z, x and G Y , x are correct. This is the case,p qr
Ž . ? @for instance, when G Z, x is correct and Y y is a maximal sub-Ž py1.qr

group in Y . Then the natural homomorphismŽ py1.qr

w : Y ª Zp qr

induces a covering

c : G Y , x ª G Z, x ,Ž .Ž .p qr

of graphs such that the Y-triangles are contractible with respect to c ,
which gives

Ž .LEMMA 2.2. Suppose that Z is a strong Y -group and that both G Z, xp qr
Ž . Ž .and G Y , x are correct. Suppose further that the Y-triangles in G Z, xp qr

Ž .generate the fundamental group of G Z, x . Then Z ( Y .p qr

In some cases examples of Y-groups can be constructed via their
Y-graphs.

LEMMA 2.3. Let y be the terminal node of the left arm of the Y -Ž py1.qr
diagram, where p y 1, q, r G 2, and z be the node adjacent to y. Let J be a
graph and Z be a ¨ertex- and edge-transitï e automorphism group of J and
suppose that the following conditions hold for a being a ¨ertex of J:

Ž . Ž .i G Y , y is correct;Ž py1.qr

Ž . Ž . Ž Ž . .ii J, Z is weakly locally G Y , y , Y and w is theŽ py1.qr Ž py1.qr a

corresponding isomorphism;
Ž . Ž ? @. � 4iii if b s w Y y then the setwise stabilizer in Z of a , b isa Ž py1.qr

Ž . Ž .the direct product of Z a l Z b and a group of order 2 generated by x;
Ž . � ? @ ? @ 4iv the setwise stabilizer in Y of Y y , Y y y isŽ py1.qr Ž py1.qr Ž py1.qr

² : ? @ ² :the direct product y = Y y, z and y is the centre of this stabi-Ž py1.qr
lizer.

Then Z is a strong Y -group.p qr

ŽProof. The Coxeter generators of Z are x and the set K of the images
. Ž .under w of the Coxeter generators of Y . By ii the generators in Ka Ž py1.qr

Ž .satisfy the Coxeter relations and the spider relation. By iii x commutes
with all the generators in K except for y. The product xy induces an

� 4 Ž ? @ .action of order 3 on the triangle T s a , b , g where g s w Y y y .a Ž py1.qr
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Ž .3 Ž .Hence s [ xy is in the elementwise stabilizer L of this triangle. By i
? @ Ž . Ž . Ž . Ž .L ( Y y, z , by iii , iv we have s g Z L and Z L is trivial byŽ py1.qr

3Ž . Ž .iv . Hence xy s 1 and the result follows.

3. AN INDUCTIVE APPROACH

Our general approach to Y is the following. We consider a group Zp qr
acting vertex and edge transitively on a graph J and we show eventually

Ž .that J is G Y , x where x is the terminal node of the left arm of thep qr
Ž .Y -diagram. First we show that J is weakly locally G Y , y where yp qr Ž py1.qr

is the node adjacent to x. Then we check the conditions in Lemma 2.3 and
conclude that Z is a strong Y -group. Finally we show that the Y-trian-p qr
gles generate the fundamental group of G and conclude from Lemma 2.2
that Z ( Y . On the last step we use the following sufficient condition ofp qr
triangulability which is a straightforward generalization of Lemma 5 from
w xRon81 .

LEMMA 3.1. Let J be a graph of diameter d and suppose that for e¨ery
2 F i F d the following two conditions hold:

Ž . Ž . Ž . Ž .i if b g J a then the subgraph in J induced by J a l J bi 1 iy1
is connected;

Ž . Ž . Ž .ii if b , g g J a and b g J g then the distance in J betweeni 1
Ž . Ž . Ž . Ž .J a l J b and J a l J g is at most 1.1 iy1 1 iy1

Then J is triangulable which means that its fundamental group is generated by
the triangles.

In some cases we are able to show that the covering of J under
consideration induces another covering of graphs whose bijectivity is
known from the literature. For this we use the strategy introduced in
w xIv94 .

5 Ž .3.1. Y ( 3 : V 3 : 2222 5

The Coxeter group C of the diagram Y is affine of type E , so that C222 6
is the semidirect product of the E -lattice L and the spherical Coxeter6

Ž .group of type E , isomorphic to V 3 : 2. Let s be the expression in the6 5
brackets of the spider relation. Then the image of s in CrL is of order 10
and hence s 10 g L. Direct calculations in the E -lattice show that the6
normal closure of s 10 generates 3L and the image in Lr3L ( 36 of this
closure is one dimensional, hence the result.

Ž . Ž .There is an orthogonal form on O Y and Y rO Y is the full3 222 222 3 222
Ž .automorphism group of this form. Then G Y , c is a graph on the set of222 1
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Ž .all vectors in a five-dimensional GF 3 -space W with a non-singular
Ž .orthogonal form, such that ¨ , w g W are adjacent if ¨ q w is a plus

Ž .Hvector, which means that the orthogonal complement ¨ q w contains a
two-dimensional totally singular subspace. It is straightforward to calculate

Ž .that the suborbit diagram of G Y , c is in Fig. 2.222 1

Ž .3.2. Y ( 2 = V 3322 7

Ž .Let W be a seven-dimensional GF 3 -space with a non-singular quadratic
Ž .form and Z ( 2 = V 3 be the full automorphism group of this form. Let7

J be a graph on the set of non-zero isotropic vectors in W in which two
such vectors are adjacent if their inner product is plus 1. Direct calcula-
tions show that the suborbit diagram is in Fig. 3.

FIGURE 2

FIGURE 3
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Ž . 5 Ž . Ž Ž ..If a g J then Z a ( 3 : V 3 : 2 ( Y and O Z a acts regularly5 222 3
Ž . Ž .on J a which immediately shows that J is weakly locally G Y , c . It1 222 1

is easy to check that the remaining conditions in Lemma 2.3 are also
satisfied and hence Z is a strong Y -group. From Fig. 3 we see that all322
triangles in J are Y-triangles. Direct calculations in the orthogonal mod-
ule W enable one to check the conditions in Lemma 3.1. Thus J is

Ž .triangulable, hence Z ( Y and J ( G Y , d by Lemma 2.2.322 322 1
� 4 � 4For i, j, k s 1, 2, 3 the nodes a, b , c , d , b , c , b on the Y -diagrami i i j j k 555

induce a spherical E -diagram, so that the corresponding Coxeter group is7
Ž .isomorphic to Sp 2 = 2 and its centre is generated by the following6

Ž w x.element cf. CNS88 :
9

f [ ab c d b c b .Ž .i jk i i i j j k

? @ Ž .For i s 2 and 3 put X s Y c and let S be the subgraph in G Y , di 322 i i 322 1
? @induced by the images of Y d under X . The Coxeter diagram of X is322 1 i i

spherical of type E and since all the Coxeter generators in Y are7 322
Ž . Ž .pairwise different, either X ( Sp 2 = 2 or X ( Sp 2 . In the latteri 6 i 6

< <case S s 28 and X acts on S doubly transitively. By observing thati i i
Ž .G Y , d does not contain cliques of size 28, or otherwise one concludes322 1

Ž .that X ( Sp 2 = 2 and the suborbit diagram of S with respect to thei 6 i
action of X is in Fig. 4.i

Ž .Comparing Fig. 4 with the diagram of G Y , d , we immediately322 1
Ž . Ž . Ž .deduce that Z X s Z X s Z Y and in terms of the above para-2 3 322

graph that f s f .123 132

LEMMA 3.2. If q, r G 2 then the element f s f is in the centre123 132
of Y .3qr

Proof. A Coxeter generator of Y commutes with f since the latter322 1 i j
element generates the centre of Y . On the other hand d and higher322 2
terms clearly commute with f and the result follows.132

Permuting the indices p, q, r we obtain obvious analogues of Lemma 3.2
Ž .compare the centres of Y-groups in Table I .

Ž .In Fig. 5 we present the suborbit diagram of G Y , c .322 2
Ž .Notice that G Y , c is the unique orbital graph of valency 288 of322 2

Ž . Ž . Ž .V 3 acting on the cosets of Sp 2 and every subgroup in V 3 of index7 6 7
Ž .3159 is isomorphic to Sp 2 .6

FIGURE 4
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FIGURE 5

qŽ .3.3. Y ( 2 ? V 3 : 2422 8

Ž .Let W be an eight-dimensional GF 3 -space with a non-singular
quadratic form of plus type. The automorphism group of this form is

qŽ . 2 Ž w x.2 ? V 3 : 2 cf. ATLAS . Let Z be a subgroup of index 2 in the8
Ž .automorphism group which contains a subgroup H ( 2 = V 3 trivially7

qŽ .intersecting the centre. Then Z ; 2 ? V 3 .2 in the atlas notation. Let O8 2
be the orbit of Z on the set of non-isotropic vectors in W such that H
stabilizes a vector from O and let J be a graph on O in which two vectors
are adjacent if their inner product is plus 1. Then the suborbit diagram of
J is in Fig. 6.

FIGURE 6
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Performing some easy calculations in the orthogonal module W, we
check that a triangle of J is contained in 72 complete subgraphs on four

Ž .vertices. In view of the suborbit diagram of G Y , c this shows that J is322 1
Ž .weakly locally G Y , c . It is straightforward to check the conditions in322 1

Lemma 2.3 and to conclude that Z is a strong Y -group. Finally the422
conditions in Lemma 3.1 hold, which show the isomorphism between Z
and Y .422

3.4. Y ( 2 = 2 ? Fi332 22

Ž .In what follows we deal with two graphs, we denote by D Fi and23
Ž .D 3 ? Fi . The former is the graph on the 3-transpositions in the Fischer24

group Fi in which two transpositions are adjacent if they commute; the23
latter is triple antipodal covering of the graph on 3-transpositions of the
Fischer group Fi in which two transpositions are adjacent if they com-24

Ž .mute. The suborbit diagram of D Fi with respect to the action of Fi is23 23
Ž .in Fig. 7 while the suborbit diagram of D 3 ? Fi with respect to the24

w x Ž .action of 3 ? Fi is in Fig. 8. It was proved in Ron81 that both D Fi24 23
Ž . Ž w xand D 3 ? Fi are triangulable see also Mei91 for a stronger characteri-24

.zation of these and related graphs .
² :Let us turn to Y . By Lemma 3.2 f is central in both Y and332 213 332

? @ Ž .Y d and hence it is in the kernel of the action of Y on G Y , d .332 1 332 332 1
Ž .Consider the action of Z [ 2 ? Fi the non-split extension on the cosets22

Ž . Žof a subgroup isomorphic to V 3 . One of the orbital graphs we denote it7
.by J with respect to this action has the suborbit diagram in Fig. 9.

In view of the diagram and the remark at the end of Subsection 3.2, we
Ž .conclude that J is weakly locally G Y , c . Now it is easy to check the322 2

conditions in Lemma 2.3 and to conclude that Z is a strong Y -group.332

FIGURE 7

FIGURE 8
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FIGURE 9

Ž .One can see from the suborbit diagram of D Fi that the stabilizer in23
Ž .Fi of a vertex a g D s D Fi is isomorphic to Z and its actions on the23 23
Ž .vertex-set of J and on D a are similar. Furthermore the subgraph in D2

Ž .induced by D a is also an orbital of valency 3159. Noticing that the2
stabilizer in Z of a triangle in J is isomorphic to Sym while the stabilizer7

Ž . w 11 x Ž . Žin Fi of a triangle in D Fi is of the form 2 .U 2 in particular it23 23 4
.does not involve Sym , we have7

Ž .LEMMA 3.3. The subgraph in D induced by D a and the graph J with2
the suborbit diagram in Fig. 9 are two different orbitals of ¨alency 3159 of the

Ž .action of 2 ? Fi on the cosets of V 3 .22 7

Ž .Using Lemma 3.3 and calculating in the graph D Fi it is not difficult23
to check that the conditions in Lemma 3.1 are satisfied for J, which gives

² :the isomorphism Y r f ( 2 ? Fi . Finally Lemma 1.1 completes the332 213 22
identification.

Noticing that the Coxeter diagram of Y is affine of type E , it is not331 7
? @ ² :difficult to identify Y c r f , f with a maximal subgroup in Fi332 3 123 213 22

6 Ž .of the form 2 : Sp 2 . The subdegrees of Fi acting on the cosets of6 22
6 Ž . w x2 : Sp 2 , as calculated in ILLSS , are6

1, 135, 1260, 2304, 8640, 10,080, 45,360, 143,360, 241,9202 .
? @ 6 Ž .Since Y b , c has index 2304 in 2 : Sp 2 the above subdegrees show332 3 3 6

Ž .that G Y , c is correct and that it is isomorphic to the unique orbital332 3
6 Ž .graph of valency 2304 of the action of Fi on the cosets of 2 : Sp 2 .22 6

3.5. Y ( 2 = Fi432 23

Ž .Let Z s Fi and J be the complement of D Fi . Then the vertex23 23
Ž .stabilizer Z a of the action of Z on J is isomorphic to 2 ? Fi which is22

the index 2 commutator subgroup of Y . The suborbit diagram of J is in332
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Ž .Fig. 10 and by Lemma 3.3 J is weakly locally G Y , d . Checking the332 1
conditions in Lemma 2.3 we conclude that Z is a Y -group.432

² :The natural homomorphism w : Y [ Y r f ª Z induces a cov-432 432 213
ering

c : G Y , e ª J ,Ž .432 1

of graphs with respect to which the Y-triangles are contractible. Our
Ž .nearest goal is to show that c induces a covering of D s D Fi .23

˜ Ž . Ž . Ž .Let P s s , s , s be a 2-path in G Y , e , P s s , s , s be its˜ ˜ ˜1 2 3 432 1 1 2 3
image in J and suppose that s and s are adjacent in D. Since c is a1 3

˜covering of graphs the stabilizer of P in Y maps isomorphically onto the432
stabilizer H of P in Z. On the other hand the suborbit diagram of J and1

Ž .the remark at the end of Subsection 3.2 show that H ( Sp 2 . Without1 6
� 4 � ? @ ? @ 4loss of generality we assume that s , s s Y e , Y e e , so that˜ ˜1 2 432 1 432 1 1

˜� 4 � ? @ ? @ 4 ? @s ,s s Z e , Z e e . Let S be the set of images of s under Y d˜1 2 1 1 1 1 432 2
? @and S be the set of images of s under Z d . Comparing the isomorphism1 2

qŽ .Y ( 2 ? V 3 : 2 and the list of maximal subgroups in Fi or otherwise422 8 23
? @ qŽ . < <one concludes that Z d ( V 3 : 2 and hence S s 1080. Thus the2 8

˜restriction of c to S is either a bijection or has fibers of size 2. In any case
˜ ˜without loss of generality we can assume that P : S, P ; S and by the

� 4 ? @above sentence the stabilizer of s , s in Y d has index at most 2 in˜ ˜1 3 432 2
� 4 ? @the stabilizer H of s , s in Z d . From the suborbit diagram of2 1 3 2

Ž . Ž . � 4G Y , e we see that H ( 2 = 2 ? U 3 : 2. Thus the stabilizers of s , s˜ ˜422 1 2 4 1 3
Ž .in Y contains a subgroup isomorphic to Sp 2 and a subgroup isomor-432 6

Ž .phic to 2 ? U 3 . On the other hand the stabilizer in Fi of an edge in D,4 23
2 Ž . Ž .isomorphic to 2 ? U 2 non-split extension is generated by any two of its6

Ž . Ž .subgroups isomorphic to Sp 2 and 2 ? U 3 . Hence the stabilizer of6 4
� 4 � 4s , s in Y maps isomorphically onto the stabilizer of s , s in Z˜ ˜1 3 432 1 3
which shows that c induces a covering

˜x : D ª D ,

˜ Ž .of graphs. Here the vertex set of D is that of G Y , e and the edges are432 1
� 4the images of s , s under Y . Since x is a covering of graphs, the˜ ˜1 3 432

FIGURE 10
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˜restriction of c to S must be a bijection and hence x induces an
˜ ˜isomorphism of the subgraph in D induced by S onto the subgraph in D

Ž .induced by S. The latter graph is the antipodal folding of G Y , e and it422 1
is of rank 3. Since this subgraph obviously contains triangles and Fi acts23
transitively on the set of triangles in D, we conclude that all the triangles

Ž .in D are contractible with respect to x . But then x and hence c as well
must be an isomorphism since the triangles generate the fundamental

w xgroup of D Ron81 . Application of Lemma 1.1 completes the identifica-
tion of Y .432

Analysing the list of maximal subgroups in Fi it is not difficult to23
? @ Ž . Ž .identify Y c with 2 = Sp 2 . Consider the action of Y onG Y , c .432 3 8 432 432 3

By Lemma 3.2 f is in the kernel of the action. The stabilizer in Y of231 432
� ? @ ? @ 4 ? @the edge e [ Y c , Y c c obviously contains Y b , c ( Sym .432 3 432 3 3 432 3 3 9

On the other hand the subdegrees of the action of Fi on the cosets of23
Ž . w xSp 2 were calculated in ILLSS . The only non-trivial subdegree which8

Ž .divides the index 130,560 of Sym in Sp 2 is 13,056 and the correspond-9 8
Ž .ing 2-point stabilizer is isomorphic to Sym . Thus G Y , c is not correct10 432 3

but in fact there is a way to ‘‘correct’’ the situation by adjoining an
additional generator. Let H ( Sym be the stabilizer in Y of the edge10 432

? @e. Then the subdiagram in Y which is the Coxeter diagram of Y b , c432 432 3 3
can be extended to that of H by adjoining a node adjacent to e or to d .1 2

Ž .Since f is in the centre of Y the extra node denote it by f must be213 432 1
adjacent to e . Since H has no outer automorphisms, f commutes with1 1
c . We claim that f also commutes with b . This claim can be checked by3 1 3

Ž . wnoticing that every edge of G Y , c is contained in 210 s Sym : Sym432 3 10 6
x Ž w x.= Sym triangles cf. ILLSS and that b is involved in the expression4 3

for the element f and the latter commutes with f . Thus Y is a213 1 432
? @Y -group. Furthermore, f commutes with Y e ( 2 = 2 ? F , the532 1 432 1 22

latter subgroup is self-centralized in Y and by Lemma 3.2 its centre is432
² :f , f . Since e has product of order 3 with both f and f we123 213 1 1 123
conclude that the latter two elements are equal.

LEMMA 3.4. Y ( Y .532 432

? @Proof. Suppose that Y f is a proper subgroup in Y and consider532 1 532
² : Ž .the action of Y [ Y r f on G Y , f . Then the structure of532 532 231 532 1

Y , Y , and Y show that the elementwise stabilizers of a vertex, an432 332 232
Ž .edge, and a triangle in Y are isomorphic to Fi , 2 ? Fi , and V 3 ,543 23 22 7

Ž .respectively. Hence G Y , f is weakly locally the complement J of532 1
Ž .D Fi with the suborbit diagram given in this subsection. If the diameter23

Ž .of G Y , f is 1 then the action of Y on the vertex set of the graph is532 1 532
doubly transitive and it is an easy exercise to show that this is not possible.
On the other hand from the suborbit diagram of J we see that the
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number of vertices at distance 2 from a given vertex is at most

31671 ? 3510r25345 - 4500.

Comparing this estimate with the indices of maximal subgroups in Fi we23
conclude that there is only one vertex at distance 2. Since the action of
Fi on J is primitive, this gives a contradiction.23

By the above lemma and the paragraph before it, we obtain

COROLLARY 3.5. If q G 3 and r G 2 then Y s Y and f s f s5qr 4 qr 1 123
f .132

Consider Y with the obvious meaning. Then the generator corre-632
sponding to the terminal node of the left arm of the Coxeter diagram
commutes with f and has product of order divisible by 3 with f . By123 1
Corollary 3.5 this gives

COROLLARY 3.6. Y and higher Y-groups collapse to a group of632
order 2.

3.6. Y ( 3 ? Fi442 24

Ž .Consider the action of Z [ 3 ? Fi on D [ D 3 ? Fi . If a g D then24 24
Ž .Z a ( 2 = Fi ( Y and a can be identified with the unique non-triv-23 432

Ž . Žial element in the centre of Z a this element is an involution which
. Ž .maps onto a 3-transposition in Fi . In these terms if b g D a then the24 i

product ab is of order 2, 3, 6 and 3 for i s 1, 2, 3, and 4, respectively.
Ž . Ž . Ž . qŽ . ? @Let b g D a . Then Z a l Z b ( V 3 : 2 ( Y d . Since the2 8 432 2

commutator subgroup Z9 still acts distance transitively on D, we conclude
Ž . Ž . Ž .that Z a l Z b is not contained in the direct factor Fi of Z a . Since23

qŽ .all subgroups in Fi isomorphic to V 3 : 2 are conjugate, this specifies23 8
Ž . Ž .the action of Z a on D a and in particular shows that this action is2

Ž .similar to the action of Y on the vertex set of G Y , d . Since432 432 2
? @ qŽ . ? @Y c , d ( V 2 : 2 is a maximal subgroup of index 28,431 in Y d432 2 2 8 432 2
qŽ . Ž .( V 3 : 2, we conclude that G Y , d is correct of valency 28,431. The8 432 2

Ž .suborbit diagram of D shows that the subgraph in D induced by D a is2
also an orbital of that valency. We claim that they are different orbitals.
Indeed, by Lemma 3.5 the stabilizer in Y s Y of a triangle in432 532
Ž . ? @G Y , d contains Y b , c , d ( Sym while the stabilizer in Z of a432 2 532 2 2 2 9

3 Ž .triangle in D is of the form 2 .U 2 and does not involve Sym . Hence the6 9
claim follows.

Notice that the set

a aQ b s g g g D a l D b s D a l D bŽ . Ž . Ž . Ž . Ž .� 42 1 2 1
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Ž . Ž . Ž .is an orbit of length 28,431 of Z a l Z b on D a containing vertices2
w xwhich are at distance 2 from b in D. It follows from PS97 that the action

qŽ .of Fi on the cosets of V 3 : 2 has subdegree 28,431 with multiplicity 1,23 8
which means that if

w : G Y , d , Y ª D a , Z aŽ . Ž . Ž . .Ž . Ž .432 2 432 2

? @is an isomorphism of permutation groups which sends Y d onto b ,432 2
Ž . ? @then Q b is the image under w of the set of vertices adjacent to Y d432 2

Ž .in G Y , d . Thus we have432 2

Ž .LEMMA 3.7. Let J be a graph on the set of ¨ertices of D s D 3 ? Fi in24
which two ¨ertices are adjacent if they are at distance 2 in D. Then J is

Ž .weakly locally G Y , d .432 2

Now it is easy to see that the conditions in Lemma 2.3 are satisfied and
Ž .hence Z ( 3 ? Fi is a Y -group by Lemma 3.5 it is also a Y -group .24 442 552

Our next goal is to show that the natural homomorphism

w : Y ª Z442

˜ Ž . Ž ? @.induces a covering of D. Let P s s , s , s be a 2-path in G Y , e ,˜ ˜ ˜1 2 3 442 1
Ž .P s s , s , s be its image in J and suppose that s and s are adjacent1 2 3 1 3

˜Ž .in D. Since w induces a covering of G Y , e onto J, the stabilizer of P442 1
q ˜Ž .in Y is isomorphic to V 2 : 2 which is the stabilizer of P in Z. Let S442 8

? @ Ž Ž ..be the set of images of Y e considered as a vertex of G Y , e442 1 442 1
? @ ? @ ? @under Y e and let S be the set of images of Z e under Z e . Since442 2 1 2

˜? @ ? @Y e ( Z e ( Y ( 2 = Fi , S maps bijectively onto S. Further-442 2 2 432 23
˜? @more Y e acts on S with kernel of order 2 and the induced action is442 2

Ž .isomorphic to that of Fi on the vertex set of D Fi . Without loss of23 23
˜ ˜generality we assume that P ; S in which case it follows from the suborbit

Ž . � 4 ? @diagram of D Fi that the stabilizer of s , s in Y e is of the form˜ ˜23 1 3 442 2
3 Ž . � 42 .U 2 . Since the stabilizer of s , s in Z, isomorphic to 2 = 2 ? Fi is6 1 3 22

qŽ . 3 Ž .generated by its subgroups isomorphic to V 2 : 2 and 2 .U 2 , we8 6
� 4conclude that the stabilizer of s , s in Y maps isomorphically onto the˜ ˜1 3 442

� 4stabilizer of s , s in Z which implies that w induces a covering1 3

˜x : D ª D ,

˜ ˜of graphs. The subgraph in D induced by S maps isomorphically onto the
subgraph in D induces by S and both these subgraphs are isomorphic to
Ž .D Fi . Since the latter graph contains triangles and Z acts transitively on23

the set of triangles in D, we conclude that the triangles are contractible
w xwith respect to x . Since D is triangulable by Ron81 both x and c are

isomorphisms and hence Y ( 3 ? Fi . Now analysing the maximal sub-442 24
? @ y Ž .groups in Fi or otherwise one can check that Y c ( V 2 : 2.24 442 3 10
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2 2 Ž .3.7. Y ( 2 = 2 ? E 2333 6

² : ² :By Lemma 3.2 f , f , f is central in Y and f , f is123 213 312 333 213 312
? @ 2 Ž .contained in Y d . Consider the action of Z s E 2 on the cosets of333 1 6

² :Fi s Y r f , f . The intersection numbers of the centralizer alge-22 233 213 312
w xbra of this action have been calculated in ISa96 . These calculations show

particularly that there is an orbital graph J of valency 694,980 with edge
stabilizer isomorphic to a maximal subgroup of Fi isomorphic to22

6 Ž .2 : Sp 2 . Furthermore, every edge of J is in exactly 13,644 triangles.6
Since

13644 s 1260 q 2304 q 10080

is the only decomposition of the number of triangles on an edge into
6 Ž . Žthe lengths of suborbits of Fi on the cosets of 2 : Sp 2 compare Sub-22 6

. Ž .section 3.4 , we conclude that J is weakly locally G Y , c . It is332 3
easy to check the conditions in Lemma 2.3, using the information in
w xISa96 . Hence Z is a Y -group. A possible way to identify Z with333

² :Y r f , f , f would be to show that the fundamental group of J333 123 213 312
is generated by the Y-triangles. But this seems to be far too difficult, since
the structure of J is rather complicated and there are many classes of
cycles in this graph. By this reason we refer to the original identification of
Y which follows from the double coset enumeration performed by S. A.333

Ž w x.Linton cf. Lin89; Soi91 .

3.8. Y ( 2 = 2 ? B433

Let Z ( 2 ? B be the extension of the Baby Monster by its Schur
multiplier of order 2. Let V be the conjugacy class of involutions in Z with

2 2 Ž . Ž w x.centralizers of the form 2 ? E 2 cf. ATLAS . Then Z acts on V by6
conjugation, the centre of Z is the kernel and the induced action is similar

2 Ž .to that of B on the cosets of 2 ? E 2 . One of the orbitals of this action6
Ž w x.has the suborbit diagram as given in Fig. 11 compare Iv94 and we

denote this orbital also by V. The vertices of V can be identified with the
involutions in the corresponding conjugacy class of 2 ? B. Then the vertex
a 9 antipodal to a is the product of a and the involution in the centre of
Z. Furthermore the product ab has order 2, 2, 3, 4, 6 and 4 if b is

Ž . Ž . 3Ž . 4Ž . 3Ž . 4Ž .contained in V a , V a 9 , V a , V a , V a 9 , and V a , respec-1 1 2 2 2 3
tively. Notice that by joining in V the antipodal vertices we obtain the
graph isomorphic to the subgraph in Monster graph from the next subsec-
tion induced by the vertices adjacent to a given vertex.

Ž . 2 2 Ž . Ž .The group Z a ( 2 ? E 2 the commutator subgroup of Y acts on6 333
3Ž . ŽV a as it acts on the cosets of its subgroup 2 ? Fi the commutator2 22
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FIGURE 11

.subgroup of Y . Hence this action is similar to the action induced by332
Ž . Ž .Y on G Y , d . The graph G Y , d has valency 694,980 and one can333 333 1 333 1

see from the diagram of V that this is also the valency of the subgraph in
3Ž . w xV induced by V a . By ISa96 the subdegree 694,980 appears with2

2 Ž .multiplicity 1 in the action of E 2 on the cosets of Fi . This means that6 22
3Ž . Ž . Ž .for b g V a the subgroup Z a l Z b has exactly two orbits of length2

3Ž . 3Ž . Ž . Ž . 3Ž .694,980 on V a , namely, V a l V b and Q b [ V a l2 2 1 2
Ž a . Ž .V b . Notice that if g g Q b then bg is of order 3 and hence1

3Ž . Ž .g g V b . We claim that G Y , d is isomorphic to the graph on2 333 1
3Ž . Ž .V a in which b is adjacent to Q b . In fact, the stabilizer in2

² : Ž .Y r f , f of a triangle in G Y , d contains Sym while if H is333 213 312 333 1 8
Ž . Ž .the stabilizer in B of a triangle in V then HrO H ( U 2 which does2 4

not involve Sym and the claim follows.8
Let J be a graph on the set of vertices of V in which a and b are

3Ž .adjacent if b g V a . By the above paragraph J is weakly locally2
Ž .G Y , d and checking the remaining conditions in Lemma 2.3 we333 1

conclude that Z ( 2 ? B is a Y -group. Notice that we realize the Coxeter433
generators of Y by involutions inside 2 ? B. By Lemma 1.1 the direct433
product 2 = 2 ? B is also a Y -group.433
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We claim that the homomorphism

² :w : Y [ Y r f , f ª B433 433 213 312

˜ Ž . Ž .induces a covering x of V. Let P s s , s , s be a 2-path in G Y , e˜ ˜ ˜1 2 3 433 1
Ž .which maps onto a 2-path P s s , s , s in J such that s and s are1 2 3 1 3

Ž .adjacent in V. Since w induces a covering of G Y , e onto J, the433 1
˜stabilizer of P in Y maps isomorphically onto the stabilizer of P in B433

and the latter is the edge stabilizer of the subgraph in V induced by
3Ž . 6 Ž . ? @V a , isomorphic to 2 : Sp 2 . We assume that s s Y e , so that˜2 6 1 433 1

˜? @ ? @s s B e . Let S be the set of images of s under Y d and let S be˜1 1 1 433 2
? @the set of images of s under B d . Since1 2

² :Y d ( B d ( Y r f ( Fi ,? @ ? @433 2 2 432 213 23

˜ ˜? @S maps bijectively onto S. Furthermore the action of Y d on S is433 2
Ž .similar to that of Fi on D Fi . Assuming without loss of generality that23 23

˜ ˜ Ž .P ; S we conclude from the suborbit diagram of D Fi that the stabilizer23
2� 4 ? @ Ž .of s , s in Y d is of the form 2 ? U 2 . Finally the stabilizer of˜ ˜1 3 433 2 6

� 4 2q20 Ž .s , s in B, isomorphic to 2 .U 2 is generated by its subgroups1 3 6
6 Ž . 2 Ž .2 : Sp 2 and 2 ? U 2 which implies that w induces a covering x :6 6

˜ ˜ Ž .V ª V of graphs. Here the vertices of V are the vertices of G Y , e433 1
˜� 4and the edges are the images of s , s under Y . The subgraph in V˜ ˜1 3 433

˜induced by S maps isomorphically onto the subgraph in V induced by S
Ž Ž ..both these subgraphs are isomorphic to D Fi . Thus the triangles in V23

w x w xare contractible with respect to x . It has been proved in Iv92b and Iv94
Ž w x.using the information on the antipodal folding of V deduced in Seg91
that V is triangulable. Hence both x and w are isomorphisms and
Y ( B.433

3.9. Y ( 2 = M443

Let Z be the Monster group M and L be the Monster graph which is a
Ž .graph on the conjugacy class of 2 A Baby Monster involutions in the

Monster with two involutions being adjacent if their product is again a 2 A
Ž . Ž .involution. If a g L then Z a ( 2 ? B the commutator subgroup of Y433

Ž .and the subgraph in L induced by L a is the graph V from the previous1
subsection together with a matching which joins pairs of antipodal vertices.
This shows that Z has two orbits on the triangles in L. Every edge is

Žcontained in a unique triangle from one of the orbits we call them short
. Žtriangles and in 3,968,055 triangles from another orbit we call them long
. w x Žtriangles . The suborbit diagram of L has been calculated in Nor85 see

w x.also GMS89 and we summarize the information on this subdiagram
Ž w x .which we use in the following lemma cf. GMS89 for proofs .
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LEMMA 3.8. Let a , b g L. Then

Ž . CŽ . Ž .i the orbit L a of Z a containing b is uniquely determined by
the conjugacy class C which contains the product ab ;

Ž .ii the class C is one of the following: 1 A, 2 A, 2 B, 3 A, 3C, 4 A, 4B,
Ž . Ž .5 A, 6 A and the corresponding 2-element stabilizers Z a l Z b are iso-

2 2 Ž . 2q22 1q22 Ž .morphic to 2 ? B, 2 ? E 2 , 2 .Co , Fi , Th, 2 .McL, 2.F 2 , HN,6 2 23 4
2 ? Fi , respectï ely;22

Ž . 3 AŽ . Ž . Ž .iii if b g L a then Z a l Z b acts transitï ely on the set of
3 AŽ . 2 AŽ . Ž .¨ertices g g L a l L b with stabilizer isomorphic to Sp 2 ;8

Ž . 4 BŽ .iv if b g L a then b is at distance 2 from a in L and there is a
unique 2-path joining these two ¨ertices;

Ž . 3 AŽ . Ž . Ž .v if b g L a then the set L a l L b is of size 31,671 and1 1
Ž . Ž .it consists of the 2 A in¨olutions contained in Z a l Z b ( Fi .23

Let J be a graph on the vertex set of L in which a and b are adjacent
3 AŽ . Ž .if b g L a . By Lemma 3.8 ii the isomorphism

² :s : Y [ Y r f ª Z aŽ .433 433 213

Ž Ž . .induces an isomorphism of the permutation group G Y , d , Y onto433 3 433
Ž Ž . Ž ..the permutation group J a , Z a . We denote the latter isomorphism1

by the same letter s . We claim that whenever u and ¨ are adjacent
Ž . Ž . Ž .vertices in G Y , d , s u and s ¨ are adjacent vertices in J. First the433 3
� 4 Ž . Ž .stabilizer of u, ¨ in Y is isomorphic to Sp 2 and by Lemma 3.8 ii we433 8

Ž . CŽ Ž ..have s u g L s ¨ where C is 2 A, 3 A, or 4B. Without loss of
? @ ? @generality we assume that u s Y d and ¨ s Y d d . Then the433 3 433 3 3

? @ Ž Ž ..isomorphism s sends the Coxeter generators of Y d into Z s u and433 3
Ž . Ž .by Lemma 3.8 v the images of the generators are contained in L a l1

Ž Ž .. Ž . Ž .L s u . The image under s of d maps s u onto s ¨ and commutes1 3
? @with the images of the Coxeter generators of Y c , d which shows that433 3 3

Ž . Ž .s u and s ¨ have at least nine common neighbours in L and by Lemma
Ž . Ž . 4 BŽ Ž .. Ž . 2 AŽ Ž ..3.8 iv s ¨ f L s u . Suppose that s ¨ g L s u . Then by

Ž . Ž .Lemma 3.8 iii G Y , d maps isomorphically onto the subgraph in L433 3
Ž .induced by J a . We know from Subsection 3.5 that the stabilizer in Y1 433

Ž .of a triangle in G Y , d is isomorphic to Sym . Clearly this must433 3 10
correspond to long triangles, but if H is the stabilizer in Z of a long

Ž . Ž .triangle then HrO H ( U 2 and the latter group does not involve2 6
Ž . Ž .Sym . This contradiction shows that s u and s ¨ are adjacent in J.10

Ž .Hence J is weakly locally G Y , d . It is easy to check the conditions in433 3
Lemma 2.3 and to conclude that Z ( M is a Y -group.443
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Next we claim that the homomorphism

² :w : Y [ Y r f ª M443 443 312

˜induces a covering x : L ª L of graphs with respect to which all long
˜ Ž . Ž .triangles are contractible. Consider a 2-path P s s , s , s in G Y , e˜ ˜ ˜1 2 3 443 1

Ž .which maps onto a 2-path P s s , s , s in J such that s and s are1 2 3 1 3
Ž .adjacent in L. Then by Lemma 3.8 iii and since w induces a covering of

˜Ž . Ž .G Y , e onto J, the stabilizer of P in Y is isomorphic to Sp 2 .443 1 443 8
? @Assume without loss of generality that s s Y e and that s is con-˜ ˜1 443 1 3

? @tained in the orbit of s under Y e ( 2 ? B. Then the suborbit diagram1̃ 443 2
� 4of V from the previous subsection shows that the stabilizer of s , s in˜ ˜1 3

? @ 3q20 Ž . � 4Y e is isomorphic to 2 .U 2 . Finally since the stabilizer of s , s443 2 6 1 3
2 2 Ž .in Z, isomorphic to 2 ? E 2 , is generated by its subgroups isomorphic to6

3q20 Ž . Ž .2 .U 2 and Sp 2 we conclude that w indeed induces a covering x :6 8
˜ ˜L ª L of graphs. The subgraph in L induced by the images of s under1̃

? @Y e is isomorphic either to the graph V from the previous subsection443 2
Ž .or to the subgraph in L induced by L a and in any case the long1

w xtriangles are contractible with respect to x . It was proved in ASeg92
Ž w x.using the information on the Monster graph deduced in GMS89 that L

w xis triangulable. In Iv94 using this result it was shown that the long
triangle already generates the whole fundamental group of J. Hence
Y ( M and in view of Lemma 1.1 we have Y ( 2 = M.443 443

3.10. Y ( M X 2444

As above let M be the Monster group, let D be the direct product of
two copies of M,

D s g , h g , h g M ; g , h ? g , h s g g , h h ,� 4Ž . Ž . Ž . Ž .1 1 2 2 1 2 2 1

Ž .and define an action of D on M by g, h : m ¬ gmh for every m g M
Ž .and g, h g D. In this way we realize D as the group generated by the left

and right regular representations of M. Let t be the permutation on M
acting by t : m ¬ my1. Then t can be considered as a permutation of D

Ž .t Ž y1 y1.via g, h s h , g , in particular t normalizes D and permutes its
² :direct factors. Define Z as the semidirect product of D and t . Then it is

Ž .easy to see that Z is the Bimonster. If Z 1 is the stabilizer in Z of the
Ž . ² : �Ž . <identity element of M then Z 1 s t = M9 where M9 s g, h g D g

y14 Ž .s h and hence every orbit of Z 1 on M is of the form C j C9 where
� y1 < 4C is a conjugacy class of M and C9 s g g g C .

Let j be a graph on M in which m and m are adjacent if and only if1 2
m my1 is an element of type 3 A in M. Since the class of 3 A elements is1 2
closed under taking inverses, Z acts on J vertex and edge transitively. If t
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� y14is of type 3 A then the stabilizer in Z of the triple T s 1, t, t is

² : ² :t = N t ( 2 = 3 ? Fi ,Ž .M 9 24

� 4which shows that the elementwise stabilizer in Z of the edge 1, t is
isomorphic to 3 ? Fi while the setwise stabilizer is of the form 3 ? Fi = 2.24 24

Let A ( Alt be a subgroup in M with the monstralizer of the form4
Ž y Ž .. Ž w x.Alt = V 2 : 2 cf. Nor98 . By the order reason all elements of order4 10
3 in A are of type 3 A and hence by choosing t and t to be suitable such1 2

� 4elements, we obtain a triangle T s 1, t , t in J whose elementwise1 1 2
y Ž . Žstabilizer is isomorphic to V 2 : 2 notice that T is fixed by the product10 1

of an element in the monstralizer of A which inverts both t and t and1 2
. Ž .the element t . Hence J is weakly locally G Y , d and by checking the443 3

conditions in Lemma 2.3, we conclude that Z is a Y -group.444
Ž .Let c : G Y , e ª J be the covering of graphs induced by the444 1

homomorphism of Y ª Z and let Q be a graph on M in which m and444 1
m are adjacent if m my1 is an element of type 2 B in M. We are going to2 1 2
show that c induces a covering x of Q and that certain triangles in Q are
contractible with respect to x . Notice that the elementwise stabilizer in Z
of an edge of Q is isomorphic to 2 = 21q24.Co . Consider in M a maximalq 1
2-local subgroup

P ( 22q11q22 . Sym = Mat ,Ž .3 24

Ž . Ž . 11 Žand let s be an element of order 3 in O P . Then C s ( 2 . 3 =2, 3 P
. Ž Ž ..Mat , s is of type 3 A by the order reason and Z O P is 2 B pure of24 2

Ž Ž .. � 4 � 4order 4. Hence for s g sZ O P R s we obtain a triple T s 1, s, s1 2 2 1
� 4 � 4such that s, 1, s is a 2-arc in J and s, s is an edge in Q. The1 1

elementwise stabilizer of T in Z contains Mat . Since c is a covering,2 24
� 4 Ž .there is a pair of vertices s, s in G Y , e which maps onto an edge of˜ 1̃ 444 1

Q and whose stabilizer in Y contains Mat .444 24
? @Put H s Z e and let S be the set of images under H of the identity3

? @element of M. Then by the previous subsection H ( Y e ( 2 = M.444 3
˜Furthermore if S is the vertex-set of a connected component of the

Ž . y1Ž . Ž .subgraph in G Y , e induced by c S then the subgraph in G Y , e444 1 444 3
˜induced by S and the subgraph in J induced by S are isomorphic to

Ž .G Y , e and H acts on S with kernel of order 2. Now without loss of443 1
generality in terms of the previous paragraph we can assume that s, s g S,1

˜ � 4 Žs, s g S. Then the setwise stabilizer of s, s in H isomorphic to the˜ 1̃ 1
� 4 . 2q22stabilizer of s, s in Y is of the form 2 = 2 .Co . Since the˜ 1̃ 444 2

stabilizer in Z of an edge in Q is generated by any two of its subgroups
isomorphic to Mat and to 2 = 22q22.Co , we conclude that the stabilizer24 2

� 4 � 4in Y of s, s maps bijectively onto the stabilizer in Z of s, s and˜ ˜444 1 1
˜hence c induced a covering x : Q ª Q of graphs. Notice that the
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˜ Ž .vertex-set of Q is that of G Y , e and the edges are the images under444 3
� 4Y of the pair s, s .˜ ˜444 1

It is clear that the covering x induces an isomorphism of the subgraph
˜ ˜in Q induced by S onto the subgraph in Q induced by S. This means that

every triangle in S is contractible with respect to x . Such a triangle is
Ž Ž ..formed for instance by the non-identity elements in Z O P . Thus we2

conclude that whenever z , z , z are elements of type 2 B in M such that1 2 3
Ž Ž ..z z z s 1 and z g O C z for 1 F i, j F 3, then the triangle in Q1 2 3 i 2 M j

� 4induced by 1, z , z is contractible with respect to x .1 2
w xNow we are going to apply a result from IPS96 to show that x is an

isomorphism. A direct factor M of D acts regularly on Q and hence Q can
be considered as a Cayley graph of M so that the corresponding genera-
tors are the 2 B involutions. Let

ˆd : Q ª Q ,

the covering of Q with respect to the subgroup in its fundamental group
� 4generated by the images under M of the triangles 1, z , z such that1 2

Ž Ž ..z , z , z [ z z are 2 B involutions and z g O C z for 1 F i, j F 3.1 2 3 1 2 i 2 M j
ˆ ˆLet M be the group of all liftings of elements of M to autmorphisms of Q.

It is clear that the subgroup of deck transformations acts regularly on each
ˆ ˆ ˜fiber and hence M acts regularly on Q. This means that Q is a Cayley

ˆ Ž .graph of M with respect to generators t z , one for every 2 B involution z
ˆin M. Since Q is undirected the generators are involutions and since the

� 4triangle 1, z , z as above is contractible with respect to d , the corre-1 2
Ž . Ž . Ž .sponding generators satisfy the equality t z t z t z s 1. The following1 2 3

w xresult has been proved in IPS96 .

ˆ Ž .LEMMA 3.9. Let M be a group generated by in¨olutions t z , one for e¨ery
Ž . Ž . Ž .2 B-in¨olution z in the Monster M such that t z t z t z s 1 whene¨er1 2 3

Ž Ž ..z , z , z are 2 B in¨olutions in M such that z g O C z for 1 F i, j F 31 2 3 i 2 M j
ˆand z z z s 1. Then M ( M.1 2 3

By Lemma 3.9 and the paragraph before it d is an isomorphism. Hence
x is an isomorphism as well and Y ( M X 2.444
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